The First Observation of Memory Effects in the InfraRed (FT-IR) Measurements: Do Successive Measurements Remember Each Other?

نویسندگان

  • Raoul R. Nigmatullin
  • Sergey I. Osokin
  • Dumitru Baleanu
  • Sawsan Al-Amri
  • Ameer Azam
  • Adnan Memic
چکیده

Over the past couple of decades there have been major advances in the field of nanoscience and nanotechnology. Many applications have sprouted from these fields of research. It is essential, given the scale of the materials, to attain accurate, valid and reproducible measurements. Material properties have shown to be a function of their size and composition. Physiochemical properties of the nanomaterials can significantly alter material behavior compared to bulk counterparts. For example, metal oxide nanoparticles have found broad applications ranging from photo-catalysis to antibacterial agents. In our study, we synthesized CuO nanoparticles using well established sol-gel based methods with varying levels of Ni doping. However, upon analysis of measured infrared data, we discovered the presence of quasi-periodic (QP) processes. Such processes have previously been reported to be tightly associated with measurement memory effects. We were able to detect the desired QP process in these measurements from three highly accurate repetitive experiments performed on each Ni (1-7%) doped CuO sample. In other words, successive measurements performed in a rather short period of time remember each other at least inside a group of neighboring measurements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXCESS THERMODYNAMIC PROPERTIES CALCULATIONS FOR ALCOHOLS IN INERT SOLVENTS BASED ON FOURIER TRANSFORM INFRARED SPECTROSCOPY MEASUREMENTS

Self-association of alcohols; including ethanol, methanol, cyclopentanol and octanol in separate mixtures with inert solvents have been studied using FT-IR spectroscopy. Except for the band at 3640 cm–1 in the IR spectrum of the alcohols which is due to the monomer species, the presence of other bands in the region of stretching vibrational frequencies of OH (3100-3700 cm–1) are attributed to t...

متن کامل

Testing the radiometric accuracy of Fourier transform infrared transmittance measurements.

We have investigated the ordinate scale accuracy of ambient temperature transmittance measurements made with a Fourier transform infrared (FT-IR) spectrophotometer over the wavelength range of 2-10 mum. Two approaches are used: (1) measurements of Si wafers whose index of refraction are well known from 2 to 5 mum, in which case the FT-IR result is compared with calculated values; (2) comparison...

متن کامل

Fe2V4O13 assisted hetero-Fenton mineralization of methyl orange under UV-A light irradiation

Fe2V4O13 is prepared and characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV-diffuse reflectance spectroscopy (UV-DRS), high resolution scanning electron microscopy (HR-SEM) using energy dispersive X-ray spectroscopy (EDX) analysis. The hetero-Fenton catalyst can be used to mineralize Methyl Orange (MO) under UV-A light. The mineralization rate is influenced by hydr...

متن کامل

Synthesis of Polythiophene/Manganese Dioxide Nanocomposites by In-situ Core-shell Polymerization Method and Study of their Physical Properties

The present research work describes an efficient method for facile synthesis of α-MnO2 nanorods by hydrothermal method and preparation of a series of polythiophene/manganese dioxide (PTh/MnO2) nanocomposites with various α-MnO2 ratios. These nanocomposites were fabricated by in-situ oxidative polymerization method using FeCl3 as oxidant, and characterized by Fourier transformed infrared (FT-IR)...

متن کامل

Structure and Magnetic Properties of Oxide Nanoparticles of Fe-Co-Ni Synthesized by Co-Precipitation Method

Oxide nanoparticles of Fe-Co-Ni were prepared in six different compositions by co-precipitation method. The as-synthesized nanoparticles were characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron microscope (FESEM), Fourier Transform Infrared (FT-IR) and Vibrating Sample Magnetometer  (VSM). It was found that the nanoparticles had mean crystalline size of 30-55 nm and spher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014